

称号及び氏名 博士（理学） Md Maruf Hussain

学位授与の日付 令和 2 年 6 月 30 日

論 文 名 GPU-based Parallel Single and Multi-objective

Particle Swarm Optimization for Large Swarms and

High Dimensional Problems

単目的および多目的の高次元最適化問題を対象とした

大規模粒子群最適化の GPU を用いた並列化

論文審査委員 主査 藤本 典幸

 副査 宇野 裕之

 副査 瀬田 和久

GPU-based Parallel Single and Multi-objective

Particle Swarm Optimization for

Large Swarms and High Dimensional Problems

Abstract

The Particle Swarm Optimization (PSO) algorithm has been first introduced by

Eberhart and Kennedy in 1995, which is one of the most important population based

nondeterministic optimization algorithms for single objective optimization problems.

Since then, many successful applications of PSO have been reported. In many of those

applications, the PSO algorithm has shown several advantages over other swarm

intelligence based optimization algorithms due to its robustness, efficiency and

simplicity. Moreover, compared to other stochastic algorithms, it usually requires less

computational effort and resources.

The PSO algorithm maintains a swarm of particles, where each of which represents a

potential solution. Here a swarm can be identified as the population and a particle as an

individual. In a PSO system, each particle flows through a multidimensional search

space and adjusts its position based on its own experience with neighboring particles.

On a CPU, this process is implemented based on task scheduling into serial processing,

whereas on a GPU, many particles can reach to their positions simultaneously, which

improves the PSO efficiency significantly. In recent years, a GPU becomes a very

popular platform for the realization of parallel computing, mainly due to changes in

architecture and development of CUDA and OpenCL languages. Previously reported

works have shown that the PSO implementation on a GPU provides a better

performance than CPU-based implementations which makes us interested in this study.

At first, we implemented a good implementation for the Standard Particle Swarm

Optimization (SPSO) on a GPU based on the CUDA architecture, which uses atomic

function, a fast pseudorandom number generator, coalescing memory access. The

algorithm is evaluated on a suite of well-known benchmark optimization functions. The

experiments are performed on an NVIDIA GeForce GTX 980 GPU and a single core of

3.20 GHz Intel Core i5 4570 CPU and the test results demonstrate that the GPU

algorithm runs about maximum 170 times faster than the corresponding CPU

algorithm. Therefore, this proposed algorithm can be used to improve required time to

solve optimization problems. After that, we conducted experiments for testing the effect

of the Pseudorandom Number Generators on the SPSO on a GPU. By using a single

step TausStep of the combined Tausworthe generator, the proposed parallel

implementation of SPSO provides up to 307 times speedup compared to a serial SPSO

implementation. Speedup is greatly accelerated for high dimensional problems, large

particles and complex benchmark functions.

The success of the PSO algorithm as a single objective optimizer has motivated us to

extend its use in other areas. One of such areas is multi-objective optimization.

Multi-objective optimization problems (MOOPs) are very common in real-world

optimization fields, where the objectives to be optimized are normally in conflict with

each other. Moore and Chapman proposed the first extension of the PSO strategy for

solving MOOPs (Multi-Objective PSO, MOPSO) in an unpublished manuscript in 1999.

With big data becoming more important as time goes by, the necessity for faster

methods is growing. The previous implementations of serial and parallel cases of

MOPSO do not meet the requirements of big data. In addition, those implementations

could only handle a limited number of dimensions. The necessity for a better method is

sorely needed.

This thesis paper presents a new GPU-parallelized implementation of MOPSO (GPU

MOPSO) based on a master-slave model for large swarms and high dimensional

optimization problems. This paper also presents a new serial implementation of

MOPSO (CPU MOPSO). Our CPU program uses a single core only although our CPU

has multiple cores. Our CPU MOPSO achieves faster performance for large swarms and

high dimensional optimization problems. The experimental results show that the

proposed GPU MOPSO increases the processing speed compared to previously proposed

approaches on a GPU based on the CUDA architecture. The proposed parallel

implementation of MOPSO using a master-slave model provides up to 157 times

speedup compared to the corresponding CPU implementation. Here, we investigate a

large number of iterations to reach good nondominated solutions which achieve good

Pareto fronts. Pareto fronts of both CPU MOPSO and GPU MOPSO implementations

match very closely to the true Pareto fronts. Performance of MOPSO is dependent upon

an archiving technique. We propose a simple parallel archiving technique which

significantly speeds up the process. Our serial archiving technique is the same as the

parallel archiving except that it is executed in serial. In our GPU MOPSO, the used

PRNG and coalescing memory access have a positive impact which improve

computational time.

In the literature, several models for parallel MOPSO have previously been proposed.

Some of these models are suited for costly platforms. For example, the island model is

suitable for clusters and grids. The diffusion model of multi-objective evolutionary

algorithms is also suitable for another costly platform, massively parallel processors. In

contrast, there are models for more affordable platforms. The master-slave model and

the hierarchical model are both suitable for GPUs, but the hierarchical model tends to

be slower than the master-slave model.

The doctoral thesis is organized as follows. In Chapter 1, we introduce our

implementations. In Chapter 2, we sketch out briefly PSO, SPSO, MOOPs, MOPSO,

GPU computing, an overview of CUDA architecture, coalescing memory access, random

number generators, Thrust library, CUB library and parallel models. In Chapter 3, we

present our CUDA Implementation of SPSO. In Chapter 4, we conduct experiments for

testing the effect of ten Pseudorandom Number Generators on the SPSO on a GPU. In

Chapter 5, we provide our MOPSO implementations on a CPU and a GPU, analyze

experimental results and compare our implementation with the previous

implementation in terms of execution time and speedup. Finally, in Chapter 6, we give

some concluding remarks and point out directions for future work.

List of Publications

Refereed Journal Paper

1. GPU-based Parallel Multi-objective Particle Swarm Optimization for Large

Swarms and High Dimensional Problems, Md. Maruf Hussain and Noriyuki

Fujimoto, Parallel Computing, 19 pages, DOI: 10.1016/j.parco.2019.102589 (2020)

(掲載決定).

Refereed International Conference Papers

1. Effect of the Pseudorandom Number Generators on the Standard Particle Swarm

Optimization on a GPU, Md. Maruf Hussain and Noriyuki Fujimoto, Proc. of the

2018 International Conference on Computational Science and Computational

Intelligence (CSCI), pp.295-300, DOI: 10.1109/CSCI46756.2018.00064 (Las Vegas,

USA, 2018).

2. Parallel Multi-Objective Particle Swarm Optimization for Large Swarm and High

Dimensional Problems, Md. Maruf Hussain and Noriyuki Fujimoto, Proc. of the

2018 IEEE Congress on Evolutionary Computation (CEC), pp.1-10, DOI:

10.1109/CEC.2018.8477848 (Rio de Janeiro, Brazil, 2018).

3. A CUDA Implementation of the Standard Particle Swarm Optimization, Md. Maruf

Hussain, Hiroshi Hattori, and Noriyuki Fujimoto, Proc. of 18th International

Symposium on Symbolic and Numeric Algorithms for Scientific Computing

(SYNASC), pp.219-226, DOI: 10.1109/SYNASC.2016.043 (Timisoara, Romania,

2016).

