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Summary

In the past decade, the requirement for speed and reliability of information
transmission increases very quickly, and certainly it will keep growing in the coming
future. High speed data transmission usually suffers from the disturbance in the
communication channel. During the transmission, the channel brings additive noise
and its frequency selective nature, due to limited bandwidth or multipath fading,
introduces InterSymbol interference (ISI). As a consequence, the transmitted signal
waveform may be severely disturbed, which will cause the loss of information at the
receiver end. Reliable transmission can not be achieved without the compensation for
these disturbances. The equalization in digital communication systems 1is a
compensation process, which combats the ISI and additive noise to reconstruct the
transmitted signal, and the compensator in this process is called equalizer.

Traditionally, the equalization is treated as an inverse filtering problem, where the
transversal structure based linear equalizer (LE) tries to form an approximation to the
inverse of the distorting channel. However, due to the noise enhancement, the accurate
approximation and good equalization performance can not be achieved by this low
computationally demanding equalizer. From the estimation theory, it is known that the
best performance is obtained by detecting the entire transmitted sequence using the
Maximum Likelihood Sequence Estimation (MLSE). High complexity and deferring
decisions associated with the MLSE are however often unacceptable in many practical
communications systems. Recent researches focus on Neural Network (NN) based
equalizers, which consider the equalization as a geometric classification problem and
provide alternative compromises between performance and complexity, Compared with

the LE, NN based equalizers have the same architecture of making decisions symbol by



symbol, but can handle a hypersurface decision boundary rather than the hyperplane
decision boundary of the LE, thus achieve superior performance. In particular, Bayesian
Equalizer (BE), a.k.a. Radial Basis Function (RBF) equalizer because of the perfect
implementation by RBF networks, is the error probability optimized solution for
symbol-decision equalization. The BE presents slightly poorer performance then MLSE
but has significantly lower complexity and shorter delay. Therefore, it is regarded as a
very promising equalization technique.

The conventional equalization is purchased with the assistance of pilot sequence, which
is known at the receiver and sent before the information-bearing signal sequence being
sent. In contrast to pilot-aided equalization, the equalizer without the benefit of a pilot
sequence is said to be self-recovering or blind equalizer. In blind equalization, the
Bussgang statistics approaches are based on a LE, thus they inherit the noise
enhancement characteristic; the Second Order Statistics (SOS) and Higher Order
Statistics (HOS) based approaches are essentially channel identification solutions,
which do not directly give equalization solution. Furthermore, these three classes of
blind equalization approaches are not suitable for nonlinear channel. For blind MLSE,
although theoretically it can be applied on nonlinear channel, it suffers from not only
the difficulty of nonlinear channel identification but also the high complexity and long
decision delay like the MLSE. On the other hand, since BE is designed in accordance
with the channel output states (COSs), the channel identification and the noise
enhancement can be avoided. Due to these attractive characteristics, naturally , it is
desirable to develop the blind equalization techniques based on BE.

So far the Bayesian family equalizers are developed for single channel, while that for
multi-

channel case has not been discussed yet. Aiming at performance improvement and
wide-range application, this thesis focuses on two topics, one is Bayesian Decision
Feedback Equalizer (BDFE) with receiver diversity combining and another one is blind
equalization using BE. The major contributions of this thesis lie on two proposed
combining schemes for BDFE with receiver diversity and the proposal of three kinds of
Blind Bayesian Equalizers (BBEs) . The main components of this thesis and the major
results of the presented work can be summarized as follows:

Chapter 1 introduces the history of the equalization research and gives an overview of
this thesis.

Chapter 2 describes the mathematical model of baseband communication system,
explains the reason of ISI and derives the BE and the BDFE.

Chapter 3 investigates the problem of BEFE with receiver diversity combining and



proposes two combining schemes. In the first combining scheme, Bayesian Decision
Variable Combining (BDVC), we employ several BDFEs corresponding to the same
numbers of receivers, and the decision variable is defined as the product of the Bayesian
Decision Variables (BDVs) in the corresponding BDFE of each sub-channel. Since the
BDVC exploits the maximum diversity at BDV level, we give the optimal solution for
multichannel. However, this optimal solution is computationally expensive. To make a
compromise between performance and complexity, a complexity reduced linear
combining is proposed, where a linear combiner is used to combine the received signals
of each subchannel before being fed to a BDFE. This eigenvector based Maximal Delay
span channel energy Combining (MDC) maximizes the desired part energy of the
combined channel, which the performance of the followed BDFE mainly depends on.
Consequently , the significant complexity reduction is achieved, at a price of light
performance loss. Although the MDC based BDFE shows somewhat worse performance
than that based on BDVC, it is more practical due to its simplicity . The validity and
performance superiority of these two combining schemes are demonstrated by the
simulations.

Chapter 4 focuses on the proposed first approach to blind equalization using BE, blind
BDFE with channel estimators. For the challenging blind equalization problem, due to
the lack of channel information, a straightforward idea is to employ a cannel estimator.
Chen et al. have proposed a blind BDFE (BBDFE) , where the channel and the signal
are estimated in a joint sense. However, this decision-directed based approach suffers
from the incorrect convergence, without the suitable initialization corresponding to the
small ISI. How to find a suitable initialization becomes a key problem. Chen et al. have
suggested an initialization according to the partial information of the channel. In
contrast, with no any knowledge of the channel, a “start” vector that has several states
is used to obtain several channel estimates, which are the initial channel estimates in
the proposed method. Then the decision-directed algorithm is individually purchased
from these initializations with the corresponding BDFEs. By evaluating the Bayesian
likelihood which is defined as the accumulation of the natural logarithm of the
maximum BDV decision variable at each instant, the optimal channel estimates
corresponding to the maximum Bayesian likelihood can be found, as well as the optimal
BDFE. Compared with Chen’s BBDFE, the proposed one not only presents better
convergence performance with less computational complexity, but also is able to deal
with the channel having severe ISI and in-band spectral null satisfactorily.

Chapter 5 develops the received signal constellation (RSC) estimation based BBE, the

proposed second approach to BE based blind equalization. Since BE is based on the



classification viewpoint, it essentially depends on the COSs, rather than the channel
itself. In other words, only the RSC, which composes the COSs, is important. Based on
this property, we develop a BBE and highlight its application in nonlinear channel.
Usually, most of the algorithms for blind equalization are developed on linear channel
models because of the simplicity. The difficulty in nonlinear case is that not only the
channel parameters but also the channel model is not known exactly. Fortunately, a BE
cares about the RSC only, so it is very suitable for nonlinear channel. Using the
Bayesian likelihood cost function which has been defined in the last chapter, the
problem becomes to maximize the Bayesian likelihood cost function with respect to the
RSC, and the complex channel modeling is avoided. For this high dimensional complex
optimal problem, a hybrid simplex genetic algorithm, in which the simplex operator is
incorporated with genetic algorithm, is proposed. Furthermore, this RSC estimation
based BBE is extended to couple with adaptive array antenna, and by employing the
above mentioned BDVC, we propose a Blind Spatial and Temporal Bayesian Equalizer
(BSTBE). Also simulation results are given to evidence the validity of the proposed
BBEs.

Chapter 6 discusses the last kind of the proposed BBEs, Cluster Map based Blind RBF
Equalizer (CM-BRE), which highlights a new cluster matching consideration of blind
equalization problem. Without channel estimator, the desired numbers of COSs (RBF
centers) can be obtained by an unsupervised clustering algorithm, Neural Gas
Algorithm (NGA). Based on the cluster matching viewpoint, which comes from the
classification nature of the BE, a cluster map generated from the known RBF equalizer
structure is used to partition the unlabeled RBF centers into appropriate subsets
merely by several simple sorting operations, which corresponds to the weight
initialization. Finally, the weights are adjusted iteratively by an unsupervised Least
Mean Squares (LMS) algorithm. Since the weights are initialized according to the
underlying structure of RBF equalizer, the proposed CM-BRE can achieve almost
identical performance with the optimal BE and avoid the calculation of the complex cost
function, for example, the above mentioned Bayesian likelihood. Moreover, by further
exploration on the COSs, CM-BRE is extended to a Cluster Map based Blind RBF
Decision Feedback Equalizer (CM-BRDFE), in which not only the determination
method of the feedback vector is given, but also the high computational load mainly
caused by NGA is reduced by a downsizing method that employs the inter-relation
among RBF centers. The proposed CM-BRDFE also has the close performance to the
optimal RBF decision feedback equalizer, which is demonstrated by the simulations.

Chapter 7 concludes this thesis and gives some topics for future research.
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