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Abstract

The Particle Swarm Optimization (PSO) algorithm has been first introduced by
Eberhart and Kennedy in 1995, which is one of the most important population based
nondeterministic optimization algorithms for single objective optimization problems.
Since then, many successful applications of PSO have been reported. In many of those
applications, the PSO algorithm has shown several advantages over other swarm
intelligence based optimization algorithms due to its robustness, efficiency and
simplicity. Moreover, compared to other stochastic algorithms, it usually requires less

computational effort and resources.

The PSO algorithm maintains a swarm of particles, where each of which represents a
potential solution. Here a swarm can be identified as the population and a particle as an
individual. In a PSO system, each particle flows through a multidimensional search
space and adjusts its position based on its own experience with neighboring particles.
On a CPU, this process is implemented based on task scheduling into serial processing,
whereas on a GPU, many particles can reach to their positions simultaneously, which
improves the PSO efficiency significantly. In recent years, a GPU becomes a very
popular platform for the realization of parallel computing, mainly due to changes in
architecture and development of CUDA and OpenCL languages. Previously reported
works have shown that the PSO implementation on a GPU provides a better

performance than CPU-based implementations which makes us interested in this study.

At first, we implemented a good implementation for the Standard Particle Swarm

Optimization (SPSO) on a GPU based on the CUDA architecture, which uses atomic



function, a fast pseudorandom number generator, coalescing memory access. The
algorithm is evaluated on a suite of well-known benchmark optimization functions. The
experiments are performed on an NVIDIA GeForce GTX 980 GPU and a single core of
3.20 GHz Intel Core i5 4570 CPU and the test results demonstrate that the GPU
algorithm runs about maximum 170 times faster than the corresponding CPU
algorithm. Therefore, this proposed algorithm can be used to improve required time to
solve optimization problems. After that, we conducted experiments for testing the effect
of the Pseudorandom Number Generators on the SPSO on a GPU. By using a single
step TausStep of the combined Tausworthe generator, the proposed parallel
implementation of SPSO provides up to 307 times speedup compared to a serial SPSO
implementation. Speedup is greatly accelerated for high dimensional problems, large

particles and complex benchmark functions.

The success of the PSO algorithm as a single objective optimizer has motivated us to
extend its use in other areas. One of such areas is multi-objective optimization.
Multi-objective optimization problems (MOOPs) are very common in real-world
optimization fields, where the objectives to be optimized are normally in conflict with
each other. Moore and Chapman proposed the first extension of the PSO strategy for
solving MOOPs (Multi-Objective PSO, MOPSO) in an unpublished manuscript in 1999.
With big data becoming more important as time goes by, the necessity for faster
methods is growing. The previous implementations of serial and parallel cases of
MOPSO do not meet the requirements of big data. In addition, those implementations
could only handle a limited number of dimensions. The necessity for a better method is

sorely needed.

This thesis paper presents a new GPU-parallelized implementation of MOPSO (GPU
MOPSO) based on a master-slave model for large swarms and high dimensional
optimization problems. This paper also presents a new serial implementation of
MOPSO (CPU MOPSO). Our CPU program uses a single core only although our CPU
has multiple cores. Our CPU MOPSO achieves faster performance for large swarms and
high dimensional optimization problems. The experimental results show that the
proposed GPU MOPSO increases the processing speed compared to previously proposed
approaches on a GPU based on the CUDA architecture. The proposed parallel

implementation of MOPSO using a master-slave model provides up to 157 times



speedup compared to the corresponding CPU implementation. Here, we investigate a
large number of iterations to reach good nondominated solutions which achieve good
Pareto fronts. Pareto fronts of both CPU MOPSO and GPU MOPSO implementations
match very closely to the true Pareto fronts. Performance of MOPSO is dependent upon
an archiving technique. We propose a simple parallel archiving technique which
significantly speeds up the process. Our serial archiving technique is the same as the
parallel archiving except that it is executed in serial. In our GPU MOPSO, the used
PRNG and coalescing memory access have a positive impact which improve

computational time.

In the literature, several models for parallel MOPSO have previously been proposed.
Some of these models are suited for costly platforms. For example, the island model is
suitable for clusters and grids. The diffusion model of multi-objective evolutionary
algorithms is also suitable for another costly platform, massively parallel processors. In
contrast, there are models for more affordable platforms. The master-slave model and
the hierarchical model are both suitable for GPUs, but the hierarchical model tends to

be slower than the master-slave model.

The doctoral thesis is organized as follows. In Chapter 1, we introduce our
implementations. In Chapter 2, we sketch out briefly PSO, SPSO, MOOPs, MOPSO,
GPU computing, an overview of CUDA architecture, coalescing memory access, random
number generators, Thrust library, CUB library and parallel models. In Chapter 3, we
present our CUDA Implementation of SPSO. In Chapter 4, we conduct experiments for
testing the effect of ten Pseudorandom Number Generators on the SPSO on a GPU. In
Chapter 5, we provide our MOPSO implementations on a CPU and a GPU, analyze
experimental results and compare our implementation with the previous
implementation in terms of execution time and speedup. Finally, in Chapter 6, we give

some concluding remarks and point out directions for future work.



List of Publications

Refereed Journal Paper

1.

GPU-based Parallel Multi-objective Particle Swarm Optimization for Large
Swarms and High Dimensional Problems, Md. Maruf Hussain and Noriyuki
Fujimoto, Parallel Computing, 19 pages, DOI: 10.1016/j.parco.2019.102589 (2020)
(BRI E).

Refereed International Conference Papers

1.

Effect of the Pseudorandom Number Generators on the Standard Particle Swarm
Optimization on a GPU, Md. Maruf Hussain and Noriyuki Fujimoto, Proc. of the
2018 International Conference on Computational Science and Computational
Intelligence (CSCI), pp.295-300, DOI: 10.1109/CSCI46756.2018.00064 (Las Vegas,
USA, 2018).

Parallel Multi-Objective Particle Swarm Optimization for Large Swarm and High
Dimensional Problems, Md. Maruf Hussain and Noriyuki Fujimoto, Proc. of the
2018 IEEE Congress on Evolutionary Computation (CEC), pp.1-10, DOI:
10.1109/CEC.2018.8477848 (Rio de Janeiro, Brazil, 2018).

A CUDA Implementation of the Standard Particle Swarm Optimization, Md. Maruf
Hussain, Hiroshi Hattori, and Noriyuki Fujimoto, Proc. of 18th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC), pp.219-226, DOI: 10.1109/SYNASC.2016.043 (Timisoara, Romania,
2016).



AR NEEEROEF

FALm SRR B
GPU-based Parallel Single and Multi-Objective Particle Swarm Optimization for
Large Swarms and High Dimensional Problems
(B EMB L UZ% ENORKRTE{(EEBR 2 X #R & Ul KSR B sE o
GPU % FH =i 51k)

B DEEEREMORELLEIT D A ba—U AT 47 AL LT 1995 4£{Z Eberhart & Kennedy (2
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