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Four main ultramafic rock bodies are distributed along the Iraqi Zagros Thrust Zone (IZTZ). They are

Penjwin, Mawat, Pauza, and Qalander ultramafic bodies in the order from southeast to northeast (Fig. 1). They
are typical lithological markers of the suture zone between Arabian and Iranian plates. Mineralogical and
petrological investigations of the IZTZ peridotites indicate that they are mantle tectonite, rather than cumulate
or replacive rock. They are mainly depleted harzburgite and dunite along with restricted occurrence of spinel
lherzolite to the Pauza ultramafic body, and consist of olivine, diopside, enstatite, spinel, serpentine polymorphs,
amphibole, and chromian chlorite. In dunite and harzburgite, chromian spinel occurs as a coarse subhedral to
euhedral grain. Chromian spinel in dunite and harzburgite commonly has Cr-rich core and Cr-poor rim. Rarely
Chromian spinel in harzburgite shows peculiar zoning of Cr-rich core and Al-rich rim. The lherzolite contains
aluminous spinel which occurs as fine subhedral to anhedral grains with lobate boundaries.

The core compositions of chromian spinels in both Mawat and Penjwin peridotites [Cr#(=Cr/(Cr+Al)) >
0.6] correlate with those of type III alpine peridotite. The chromian spinel core composition in Pauza comprises
both type I alpine peridotite for lherzolite (Cr# = 0.36 - 0.40) and type III alpine peridotite for dunite (Cr# =
0.78 - 0.82) and harzburgite (Cr# = 0.58 - 0.6). Gradual increasing of TiO; and gradual decreasing of Al,O3 in
chromian spinels with increasing the
degree of partial melting in peridotite, 3
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are fragments of suprasubduction zone
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residual mantle peridotites.
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changes in mineral compositions the location of the main ultramafic bodies.
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green of extensively serpentinized samples.
This color variation between partly and extensively serpentinized samples cannot be noticed in the isolated
serpentinite bodies in Mawat and Qalander areas. For these occurrences, the best evidence of this transition
is the development of “kernel” texture, which is more common for the Mawat serpentinized peridotite. The
kernel texture consists of extensively serpentinized green colored zone forming a rind around rectangular to
trapezoidal block of dun-colored partly serpentinized rock.

The serpentinization process of peridotite along the IZTZ having both criteria of isochemical and
allochemical processes. The formation of metasomatic rocks, rodingite and albitite in the Penjwin peridotite
body involves loss and gain of CaO, SiO,, and Na,O between serpentinized peridotite and country rock,
indicating that the serpentinization of the Penjwin peridotites is constant-volume process. However, the
intensive fracturing in the massive serpentinite as well as the occurrence of kernel pattern requires an increase
of the volume of ultramafic body, suggesting that serpentinizations of Mawat and Qalander peridotites are of
constant-chemical process.

For the first time, albitite was found in the IZTZ near the village of Mlakawa, 60 km northeast of
Sulaimani City, Kurdistan region, northeastern Iraq. It occurs as a white pod within the massive tectonized and
serpentinized part of Penjwin ophiolite sequence. The preserved texture and mineralogical, petrological, and
geochemical data from the core of the albitite pod suggest that protolith of Mlakawa albitite is plagiogranite. It
has undergone rodingitization and blackwall formation along its rim.

The occurrence of barium aluminoslicate (celsian), cymrite, barium muscovite, and a high Na,O
concentration (11 wt. %) of albitite suggests that barium-sodium-rich fluid was involved during the albitization
process of plagiogranite. Evidence of the progressive albitization includes the metasomatic replacement of Ca-
plagioclase to albite and grossular, celsian to cymrite, replacement of tremolite by edenite, and new formation
of sheaf-like barium muscovite. The presence of analcime and multiple generations of chlorite suggest that
the albitite protolith was accompanied by chloritization and retrograde metamorphism before and after the
albitization process.

Ca-amphibole thermobarometry (Fig. 3) and modes of occurrence of polygenetic metamorphic titanite,
along with the occurrence of strontium apatite and cymrite, suggest that the albitization of plagiogranite
occurred at < 650 °C and 1.5 GPa.

Three types of metamorphic titanite have been noted in albitite. Type I metamorphic titanite occurs as

subhedral to anhedral fine-grained disseminated crystals within chlorite that was formed during chloritization of



biotite as a result of low-temperature
(T =330 — 340 °C) ocean-floor
metamorphism or rodingitization
of plagiogranite under a reducing
environment. It is characterized by
intermediate AlbO3 (Av: 3.61 wt
.%), high FeOotal (Av: 0.89 wt. %),
and intermediate TiO2 (Av: 34.7 wt.
%). Type II metamorphic titanite
occurs as a thin rim around ilmenite
and has high A0z (Av: 4.8 wt.
%), intermediate FeOtotal (Av: 0.6
wt. %), and low TiO: (Av: 33.7 wt.
%); it represents a reaction product
between grossular and ilmenite,
which resulted from an oxidizing
high pressure—high temperature (P
=1.4-1.6 GPaand T > 750°C)
metamorphic event involving
plagiogranite. Type III metamorphic
titanite occurs as very coarse, highly
fractured grains up to 0.5 mm,
with inclusions of ilmenite, and
surrounded by albitic plagioclase,
analcime, and chlorite. The titanite
is characterized by low Al,O3 (Av:
1.23 wt. %), low FeOyorat (Av: 0.30
wt. %), and high TiO, (Av: 36.98
wt. %). It formed during extensive
titanitization of ilmenite by a
reaction with Ca- plagioclase during
moderate pressure and temperature
(P < 1.6 GPa and T< 750°C)
conditions, as a result of albitization
of Ca-plagioclase in plagiogranite.
Many researchers working on
titanite conclude that the iron is
trivalent and occupies the Ti site.
This study suggests that the state of
Fe in the titanite structure is directly
controlled by oxygen fugacity during
metamorphic titanite formation. In
conditions below QMF, the Fe in

the titanite structure is divalent and
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Fig. 3. Chemical compositions of amphiboles in Mlakawa albitite plotted on a diagram
with isoplethes of Al,0; and TiO, of clacic amphibole (after Ernst and Liu, 1998).
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occupies the Ca site. In conditions above QMF, the Fe is trivalent and occupies the Ti site

Serpentinization, rodingitization, and albitization processes observed in the Mlakawa albitite are
complementary processes (Fig. 4). Each process has a specific effect during a particular time in the evolution
of the ultramafic-plagiogranite part of the Penjwin ophiolite sequence, leading to the formation of the Mlakawa
albitite. Both serpentinization of peridotite and rodingitization of plagiogranite represent low-temperature and
low-pressure conditions during the oceanic and the subduction stages before collision of the Arabian plate with
the Iranian plate. In contrast, the albitization of plagiogranite represents high-pressure and high-temperature

conditions at the collisional stage of the Arabian plate with the Iranian plate during the Late Cretaceous period.
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